Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612761

RESUMO

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Assuntos
Acetilcisteína/análogos & derivados , Doença de Parkinson , Sinucleinopatias , Humanos , Animais , Ratos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , alfa-Sinucleína/genética , Chaperona BiP do Retículo Endoplasmático , Administração Intranasal , Neuroproteção
2.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280079

RESUMO

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistência a Medicamentos , Etoposídeo/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Macrófagos Associados a Tumor/metabolismo
3.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893747

RESUMO

Despite significant progress in the diagnosis and treatment of colorectal cancer, drug resistance continues to be a major limitation of therapy. In this regard, studies aimed at creating combination therapy are gaining popularity. One of the most promising adjuvants are inhibitors of the proteostasis system, chaperone machinery, and autophagy. The main HSP regulator, HSF1, is overactivated in cancer cells and autophagy sustains the survival of malignant cells. In this work, we focused on the selection of combination therapy for the treatment of rectal cancer cells obtained from patients after tumor biopsy without prior treatment. We characterized the migration, proliferation, and chaperone status in the resulting lines and also found them to be resistant to a number of drugs widely used in the clinic. However, these cells were sensitive to the autophagy inhibitor, chloroquine. For combination therapy, we used an HSF1 activity inhibitor discovered earlier in our laboratory, the cardenolide CL-43, which has already been proven as an auxiliary component of combined therapy in established cell lines. CL-43 effectively suppressed HSF1 activity and Hsp70 expression in all investigated cells. We tested the autophagy inhibitor, chloroquine, in combination with CL-43. Our results indicate that the use of an inhibitor of HSF1 activity in combination with an autophagy inhibitor results in effective cancer cell death, therefore, this therapeutic approach may be a promising treatment regimen for certain patients.

4.
Sci Rep ; 11(1): 21314, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716378

RESUMO

The release of Hsp70 chaperone from tumor cells is found to trigger the full-scale anti-cancer immune response. Such release and the proper immune reaction can be induced by the delivery of recombinant Hsp70 to a tumor and we sought to explore how the endogenous Hsp70 can be transported to extracellular space leading to the burst of anti-cancer activity. Hsp70 transport mechanisms were studied by analyzing its intracellular tracks with Rab proteins as well as by using specific inhibitors of membrane domains. To study Hsp70 forms released from cells we employed the assay consisting of two affinity chromatography methods. Hsp70 content in culture medium and extracellular vesicles (EVs) was measured with the aid of ELISA. The properties and composition of EVs were assessed using nanoparticle tracking analysis and immunoblotting. The activity of immune cells was studied using an assay of cytotoxic lymphocytes, and for in vivo studies we employed methods of affinity separation of lymphocyte fractions. Analyzing B16 melanoma cells treated with recombinant Hsp70 we found that the chaperone triggered extracellular transport of its endogenous analog in soluble and enclosed in EVs forms; both species efficiently penetrated adjacent cells and this secondary transport was corroborated with the strong increase of Natural Killer (NK) cell toxicity towards melanoma. When B16 and CT-26 colon cancer cells before their injection in animals were treated with Hsp70-enriched EVs, a powerful anti-cancer effect was observed as shown by a two-fold reduction in tumor growth rate and elevation of life span. We found that the immunomodulatory effect was due to the enhancement of the CD8-positive response and anti-tumor cytokine accumulation; supporting this there was no delay in CT-26 tumor growth when Hsp70-enriched EVs were grafted in nude mice. Importantly, pre-treatment of B16 cells with Hsp70-bearing EVs resulted in a decline of arginase-1-positive macrophages, showing no generation of tumor-associated macrophages. In conclusion, Hsp70-containing EVs generated by specifically treated cancer cells give a full-scale and effective pattern of anti-tumor immune responses.


Assuntos
Imunidade Adaptativa , Vesículas Extracelulares , Proteínas de Choque Térmico HSP70/farmacologia , Animais , Carcinoma/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Camundongos
5.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199046

RESUMO

Hyperglycemia may contribute to the progression of carcinomas by triggering epithelial-to-mesenchymal transition (EMT). Some proteostasis systems are involved in metastasis; in this paper, we sought to explore the mechanism of Hsp70 chaperone in EMT. We showed that knockdown of Hsp70 reduced cell migration capacity concomitantly with levels of mRNA of the Slug, Snail, and Twist markers of EMT, in colon cancer cells incubated in high glucose medium. Conversely, treatment of cells with Hsp70 inducer U-133 were found to elevate cell motility, along with the other EMT markers. To prove that inhibiting Hsp70 may reduce EMT efficiency, we treated cells with a CL-43 inhibitor of the HSF1 transcription factor, which lowered Hsp70 and HSF1 content in the control and induced EMT in carcinoma cells. Importantly, CL-43 reduced migration capacity, EMT-linked transcription factors, and increased content of epithelial marker E-cadherin in colon cancer cells of three lines, including one derived from a clinical sample. To prove that Hsp70 chaperone should be targeted when inhibiting the EMT pathway, we treated cancer cells with 2-phenylethynesulfonamide (PES) and demonstrated that the compound inhibited substrate-binding capacity of Hsp70. Furthermore, PES suppressed EMT features, cell motility, and expression of specific transcription factors. In conclusion, the Hsp70 chaperone machine efficiently protects mechanisms of the EMT, and the safe inhibitors of the chaperone are needed to hamper metastasis at its initial stage.


Assuntos
Glicemia , Transição Epitelial-Mesenquimal , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biomarcadores , Caderinas/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/farmacologia , Humanos , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Ligação Proteica , Fatores de Transcrição da Família Snail/metabolismo
6.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861801

RESUMO

Cancer cells are known to contain high levels of the heat shock protein 70 kDa (Hsp70), which mediates increased cell proliferation, escape from programmed cell death, enhanced invasion, and metastasis. A part of Hsp70 molecules may release from cancer cells and affect the behavior of adjacent stromal cells. To explore the effects of Hsp70 on the status of monocytes/macrophages in the tumor locale, we incubated human carcinoma cells of three distinct lines with normal and reduced content of Hsp70 with THP1 monocytes. Using two methods, we showed that the cells with knock-down of Hsp70 released a lower amount of protein in the extracellular medium. Three cycles of the co-cultivation of cancer and monocytic cells led to the secretion of several cytokines typical of the tumor microenvironment (TME) and to pro-cancer activation of the monocytes/macrophages as established by elevation of F4/80 and arginase-1 markers. Unexpectedly, the efficacy of epithelial-mesenchymal transition and resistance of carcinoma cells to anticancer drugs after incubation with monocytic cells were more pronounced in cells with lower Hsp70, e.g., releasing less Hsp70 into the extracellular milieu. These data suggest that Hsp70 released from tumor cells into the TME is able, together with the development of an anti-cancer immune response, to limit the conversion of a considerable part of monocytic cells to the pro-tumor phenotype.


Assuntos
Carcinogênese/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Microambiente Tumoral , Células A549 , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Humanos , Imunidade , Macrófagos/patologia , Monócitos/patologia
7.
Data Brief ; 20: 899-902, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30225299

RESUMO

These data are related to our paper "GAPDH-targeted therapy - a new approach for secondary damage after traumatic brain injury on rats" (Lazarev et al., In press), in which we explore the role of exogenous GAPDH in traumatic brain injury-induced neuron death, and the therapeutic application of small molecules that bind to the enzyme. The current article demonstrates the induction of apoptosis by exogenous GAPDH and the effectiveness of the hydrocortisone derivative for suppressing the pathogenic action of the enzyme.

8.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149619

RESUMO

The Hsp70 chaperone binds and inhibits proteins implicated in apoptotic signaling including Caspase-3. Induction of apoptosis is an important mechanism of anti-cancer drugs, therefore Hsp70 can act as a protective system in tumor cells against therapeutic agents. In this study we present an assessment of candidate compounds that are able to dissociate the complex of Hsp70 with Caspase-3, and thus sensitize cells to drug-induced apoptosis. Using the PASS program for prediction of biological activity we selected a derivative of benzodioxol (BT44) that is known to affect molecular chaperones and caspases. Drug affinity responsive target stability and microscale thermophoresis assays indicated that BT44 bound to Hsp70 and reduced the chaperone activity. When etoposide was administered, heat shock accompanied with an accumulation of Hsp70 led to an inhibition of etoposide-induced apoptosis. The number of apoptotic cells increased following BT44 administration, and forced Caspase-3 processing. Competitive protein⁻protein interaction and immunoprecipitation assays showed that BT44 caused dissociation of the Hsp70⁻Caspase-3 complex, thus augmenting the anti-tumor activity of etoposide and highlighting the potential role of molecular separators in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Etoposídeo/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Ligação Proteica
9.
Oncotarget ; 9(43): 27268-27279, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29930764

RESUMO

Combinational anticancer therapy demonstrates increased efficiency, as it targets different cell-survival mechanisms and allows the decrease of drug dosages that are often toxic to normal cells. Inhibitors of the heat shock response (HSR) are known to reduce the efficiency of proteostasis mechanisms in many cancerous cells, and therefore, may be employed as anti-tumor drug complements. However, the application of HSR inhibitors is limited by their cytotoxicity, and we suggested that milder inhibitors may be employed to sensitize cancer cells to a certain drug. We used a heat-shock element-luciferase reporter system and discovered a compound, CL-43, that inhibited the levels of heat shock proteins 40, 70 (Hsp70), and 90 kDa in HCT-116 cells and was not toxic for cells of several lines, including normal human fibroblasts. Consequently, CL-43 was found to reduce colony formation and motility of HCT-116 in the appropriate assays suggesting its possible application in the exploration of biology of metastasizing tumors. Importantly, CL-43 elevated the growth-inhibitory and cytotoxic activity of etoposide, cisplatin, and doxorubicin suggesting that the pro-drug has broad prospect for application in a variety of anti-tumor therapy schedules.

10.
Biochem Biophys Res Commun ; 501(4): 1003-1008, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29777694

RESUMO

Massive neuronal death caused by a neurodegenerative pathology or damage due to ischaemia or traumatic brain injury leads to the appearance of cytosolic proteins in the extracellular space. We found that one of the most abundant cellular polypeptides, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), appearing in the medium of dying cells or body fluids is able to form aggregates that are cytotoxic to adjacent cells. Since we previously showed that the hydrocortisone derivative RX624 can inhibit the ability of GAPDH to transport the enzyme complex with polyglutamine and reduce the cytotoxicity of the complex, we explored the effects of GAPDH on SH-SY5Y neuroblastoma cells. We found that the latter treated with particular forms of GAPDH molecules die with a high efficiency, suggesting that the exogenous enzyme does kill adjacent cells. RX624 prevented the interaction of exogenous GAPDH with the cell membrane and reduced the level of death by more than 10%. We also demonstrated the efficiency of RX624 treatment in a rat model of traumatic brain injury. The chemical blocked the formation of GAPDH aggregates in the brain, inhibited the cytotoxic effects of cerebrospinal fluid and rescued the motor function of injured rats. Importantly, RX624 treatment of rats had a similar effect as the intracranial injection of anti-GAPDH antibodies.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Terapia de Alvo Molecular , Animais , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/fisiopatologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Modelos Animais de Doenças , Humanos , Atividade Motora , Coelhos , Ratos Wistar
11.
Cell Death Dis ; 9(2): 41, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348557

RESUMO

Hsp70 chaperone controls proteostasis and anti-stress responses in rapidly renewing cancer cells, making it an important target for therapeutic compounds. To date several Hsp70 inhibitors are presented with remarkable anticancer activity, however their clinical application is limited by the high toxicity towards normal cells. This study aimed to develop assays to search for the substances that reduce the chaperone activity of Hsp70 and diminish its protective function in cancer cells. On our mind the resulting compounds alone should be safe and function in combination with drugs widely employed in oncology. We constructed systems for the analysis of substrate-binding and refolding activity of Hsp70 and to validate the assays screened the substances representing most diverse groups of chemicals of InterBioScreen library. One of the inhibitors was AEAC, an N-amino-ethylamino derivative of colchicine, which toxicity was two-orders lower than that of parent compound. In contrast to colchicine, AEAC inhibited substrate-binding and refolding functions of Hsp70 chaperones. The results of a drug affinity responsive target stability assay, microscale thermophoresis and molecular docking show that AEAC binds Hsp70 with nanomolar affinity. AEAC was found to penetrate C6 rat glioblastoma and B16 mouse melanoma cells and reduce there the function of the Hsp70-mediated refolding system. Although the cytotoxic and growth inhibitory activities of AEAC were minimal, the compound was shown to increase the antitumor efficiency of doxorubicin in tumor cells of both types. When the tumors were grown in animals, AEAC administration in combination with doxorubicin exerted maximal therapeutic effect prolonging animal survival by 10-15 days and reducing tumor growth rate by 60%. To our knowledge, this is the first time that this approach to the high-throughput analysis of chaperone inhibitors has been applied, and it can be useful in the search for drug combinations that are effective in the treatment of highly resistant tumors.


Assuntos
Proteínas de Choque Térmico HSP70/imunologia , Chaperonas Moleculares/imunologia , Simulação de Acoplamento Molecular/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
12.
Oncotarget ; 7(16): 22050-63, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26959111

RESUMO

The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Invasividade Neoplásica/patologia , Ratos , Ratos Wistar
13.
Cancer Immunol Immunother ; 65(1): 83-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26646850

RESUMO

Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma.


Assuntos
Proteínas de Choque Térmico HSP70/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Microscopia Confocal/métodos , Floretina/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas
14.
Cell Stress Chaperones ; 20(2): 343-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25387797

RESUMO

Chaperone Hsp70 can cross the plasma membrane of living cells using mechanisms that so far have not received much research attention. Searching the part of the molecule that is responsible for transport ability of Hsp70, we found a cationic sequence composed of 20 amino acid residues on its surface, KST peptide, which was used in further experiments. We showed that KST peptide enters living cells of various origins with the same efficiency as the full-length chaperone. KST peptide is capable of carrying cargo with a molecular weight 30 times greater than its own into cells. When we compared the membrane-crossing activity of KST peptide in complex with Avidin (KST-Av complex) with that of similarly linked canonical TAT peptide, we found that TAT peptide penetrated SK-N-SH human neuroblastoma cells at a similar rate and efficiency as the KST peptide. Furthermore, KST peptide can carry protein complexes consisting of a specific antibody coupled to the peptide through the Avidin bridge. An antibody to Hsp70 delivered to SK-N-SH cells with high expression level of Hsp70 reduced the protective power of the chaperone and sensitized the cells to the pro-apoptotic effect of staurosporine. We studied the mechanisms of penetration of KST-Av and full-length Hsp70 inside human neuroblastoma SK-N-SH and human erythroleukemia K-562 cells and found that both used an active intracellular transport mechanism that included vesicular structures and negatively charged lipid membrane domains. Competition analysis of intracellular transport showed that the chaperone reduced intracellular penetration of KST peptide and conversely KST peptide prevented Hsp70 transport in a dose-dependent manner.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/imunologia , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Células K562 , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
15.
Oncotarget ; 5(10): 3101-14, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24797019

RESUMO

Hsp70 chaperone is known to stimulate anti-tumour immunity in a variety of cancer models. Here we demonstrated that the addition of purified recombinant Hsp70 to the culture medium facilitated cancer cell cytolysis by lymphocytes. Importantly, exogenous Hsp70 triggered secretion of the intracellular Hsp70 to a cell surface and extracellular milieu, which played a role in cytolysis because down-regulation of the endogenous Hsp70 reduced both its presence at the cell surface and the lymphocyte-mediated cytolysis. Inhibitors that target both the ATPase and the peptide-binding domains of Hsp70 molecule potently decreased its anti-tumor effect. Using a variety of cell transport markers and inhibitors, we showed that the exchange of exogenous and intracellular Hsp70 is supported by classical and non-classical transport pathways, with a particular role of lipid rafts in the chaperone's intracellular transport. In conclusion, exogenous Hsp70 can eject endogenous Hsp70, thus exerting anticancer activity.


Assuntos
Citotoxicidade Imunológica/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Microdomínios da Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Microscopia Confocal , Ratos
16.
Int J Cancer ; 135(9): 2118-28, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24691976

RESUMO

Chaperone Hsp70 can activate adaptive immunity suggesting its possible application as an antitumor vaccine. To assess the therapeutic capacity of Hsp70 we administered purified chaperone into a C6 glioblastoma brain tumor and explored the viability and tumor size as well as interferon gamma (IFNγ) production and cytotoxicity of lymphocytes in the treated animals. Targeted intratumoral injection of Hsp70 resulted in its distribution within the area of glioblastoma, and caused significant inhibition of tumor progression as confirmed by magnetic resonance imaging. The delay in tumor growth corresponded to the prolonged survival of tumor-bearing animals of up to 31 days versus 20 days in control. Continuous administration of Hsp70 with an osmotic pump increased survival even further (39 days). Therapeutic efficacy was associated with infiltration to glioblastoma of NK cells (Ly-6c+) and T lymphocytes (CD3+, CD4+ and CD8+) as well as with an increase in the activity of NK cells (granzyme B production) and CD8+ T lymphocytes as shown by IFNγ ELISPOT assay. Furthermore, we found that Hsp70 treatment caused concomitantly, with a tenfold elevated IFNγ production, an increase in anti-C6 tumor cytotoxicity of lymphocytes. In conclusion, continuous intratumoral delivery of Hsp70 demonstrates high therapeutic potential and therefore could be applied in the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Glioblastoma/terapia , Proteínas de Choque Térmico HSP70/metabolismo , Imunoterapia , Animais , Apoptose , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Glioblastoma/imunologia , Glioblastoma/metabolismo , Proteínas de Choque Térmico HSP70/administração & dosagem , Humanos , Técnicas Imunoenzimáticas , Injeções Intralesionais , Interferon gama/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Masculino , Ratos , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...